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SUMMARY 

We consider the connection between vibration and buckling problems for a uniform flexible rod which is 
clamped at one end and rotates in a plane perpendicular to the axis of rotation. The rod is assumed 
off-clamped, i.e. the axis of rotation does not pass through the rod's clamped end. The resulting fourth-order 
boundary value problem with a turning point for the free vibrations is solved using uniform approximations 
in a transitional parameter range where high rotation rates balance small off-clampings. Second 
approximations to the vibration eigenvalues are used to determine critical buckling rotation rates for the 
slightly off-clamped rods. Buckling is unexpected in this situation as the rod is wholly under tension. 

1. Introduction 

In this work, we consider several boundary value problems which arise in connection with the 

vibration and buckling of  a uniform flexible rod which is clamped at one end and rotates in a 

plane perpendicular to the axis of  rotation. The axis of  rotation, however, is not assumed to 

pass through the rod's clamped end. Rather, as the rod rotates, its clamped end describes a 

circle of  radius R > 0 about the axis of  rotation. If the rod has length L, then the degree of  

off-clamping is described by the dimensionless parameter a = R/L.  Small a ,  i.e. R << L, 

corresponds to a wobbling hub-clamped rotor, while a > 1 corresponds to a rod which is 

clamped to the rim of  a rotating wheel and extends inward toward the center like a partial 

spoke. Recent interest in rotating rods stems from applications to the dynamic stability of  

satellite antennas, helicopter  rotor blades, turbine blades, and energy-storing flywheels. Rota- 

tion rates in these applications are usually high. 

Let the rod have cross-sectional area A, mass per unit volume p, bending stiffness El, and 

constant angular velocity ~ .  We will assume that the rod does not twist, and for the vibration 

problem we seek displacements with harmonic time dependence e iwt. If the amplitude of  the 

vibrations is sufficiently small that we can consistently linearize, then the equation governing 

the free vibrations in a plane making an angle 0 with the plane of  rotation (0 _< 0 < 7r/2) is 

~'(3wiV - -  ½(1 + x )  (1 - 2a - x ) w "  

+ (x + a)w'  - (X + cos20)w = 0 (1.1) 

where 

~ 3 = EIIPA~22 L4 and 7t = (wlf2)  2. 

0022-0833/79/04/033%08 $00. 20/0 

(1.2) 
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For rapid rotation rates,'~" is small, real, and positive. The zero displacement and slope require- 
ments at the clamped end x = 0 and the vanishing of stress and bending moment at the free end 
x = -1  lead to the associated boundary conditions 

w(0) = w'(0) = w"(-1)  = w" ( -1 )  = 0. (1,3) 

Positive eigenvalues X(a, ~,, 0) of the boundary value problem (1.1) and (1.3) now give the 
rotating rod's natural frequencies of vibration 02 = k l/2 ~.  

Time-independent deformed states (buckled modes) of the rotating rod are governed by the 
equation 

u iv -/22{½(1 +x) (1 - 2o~ - x ) u "  - (x + a)u' + (cos20)u} = 0 (1.4) 

where/22 = ~,-3 and 0 is the angle between the plane of rotation and the plane in which buckling 
occurs. Associated boundary conditions are again (1.3), and the positive eigenvalues/2 (a,O)of  

the boundary value problem (1.3) and (1.4) determine the critical rotation rates g2 = 
/2[E1/pAL 4 ]i/2 for buckling. 

The use of vibration results to predict buckling for rapid rotation rates has been explored 
previously by Lakin and Nachman [4] in the off-clamped rod context. For fixed small~" and a 
in the range O(e3/2) < a <  1/2, it was found that there is a critical angle 0 c for which the 

lowest vibration eigenvalue Xo vanishes. Comparing (1.1) and (1.4), the corresponding 'vibra- 
tion' eigenfunction is now a solution of the buckling boundary value problem (1.3) and (1.4) 

with positive #2 and hence represents a time-independent (020 = X 1/2~2 = 0) buckled mode in 

the 0c-plane. Indeed, the curve 0 = Oc(a), for which ~o = 0, is a buckling boundary. For 0" < 0 c, 

Lakin and Nachman [4] also found that the lowest vibration eigenvalue ko is negative. One of 
the square roots of ko is thus purely imaginary and negative s o  e i t ° o r =  e +°ot  where 

Oo = ~21X0[ 1/2 ~ 0. Hence, in planes with 0 < 0 c small amplitude disturbances of the rod will 
grow without oscillation and diverge. In a fluid mechanics context, this behavior would be 
termed an instability. 

As cos 0 is a decreasing function of 0 for 0 < 0 < n/2, for given a and ~', ko will be an 
increasing function of 0. Hence, buckling or divergence will first be observed in the plane of 
rotation where 0 = 0. For physical applications, in-plane buckling, and hence in-plane vibra- 
tions, will thus be most important. In treating the vibration equation (1.1), however, it is 
considerably more convenient to obtain the eigenvalues for transverse vibrations 0 = 1r/2. In- 
plane eigenvalues may then be obtained from the transverse eigenvalues through the simple 
relation 

k(a,~', O) = k(a,~', 7r/2) - 1. (1.5) 

Results for transverse vibration obtained by Lakin [2], coupled with (1.5), show that for 
a < O('~3/2), ko(a,~', 0) is positive, so the rotating rod can sustain small vibrations and does not 
buckle. For a > O(e '/2), Lakin and Nachman [4] found that while )to may be zero or negative, 
the tfigher vibration eigenvalues kn(Ot,'~, 0) were positive for a < 1/2, 0 < 0 < n/2, and n >__ 1, 
so the rod has exactly one buckled mode. 
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In this paper, we concentrate on the transition case (the distinguished limit) where slight 

off-clamping and rapid rotation combine to give a = O(e3/2). A principal objective is to deter- 

mine the constant k such that when a >__ k e3/2 in-plane buckling is indicated. As a is small and 
~ 1/c~, the in-plane buckled mode in this transition range will correspond to a large buckling 

eigenvalue, i.e. a high rotation rate. 

2. Vibration eigenvalue for a = OC~ 3/2 ) 

As "g is small for rapid rotation rates, asymptotic methods may be used to approximate solu- 

tions of equation (1.1). In particular, the reduced equation obtained by setting'~"to zero is only 
of second order, so singular perturbation techniques are required. For a < 1/2, the distinctive 

character of the boundary value problem now comes from the simple turning point at the 

endpoint x = - 1  where the coefficient of w" in (1.1)vanishes. A further complication here is 
that one solution of the reduced equation has a logarithmic singularity at the turning point, 
whereas the corresponding solution of the full equation is regular at the turning point. 

The off-clamping paramter a may be removed from equation (1.1) by defining new indepen- 
dent and dependent variables 

x + a and q$(y) = w(x). (2.1) 
Y -  1 -c~  

For 0 = n/2, the equation (1.1) for transverse vibrations becomes 

e3cb iv - ½(1 _y2)~,, +Y4~' - X~ = 0 (2.2) 

where e 3 = ,~3 (1 - c0 -4 . The parameter a now appears in the transformed boundary conditions 

= = ~"( -1)  = q$"(-1) = 0. (2.3) 

A set of four linearly independent exact solutions of equation (2.2) which are 'numerically 

satisfactory' in the sense of Miller [6] may be defined to within multiplicative constants by 
their asymptotic properties away from the turning point in [ -1 ,  a/( 1 -~ ) ] .  The solution/do is well 

balanced, U1 is balanced but logarithmic, V~ is recessive, while V2 is dominant for 

-1  < y  < ~/(1 - ~). Care must be taken with U~ as adding multiples of Uo will not effect the 

defining asymptotic property. 
Approximations to solutions of equation (2.2) have been derived by Lakin [1 ], Lakin and 

Ng [5], and Peters [7]. In the present work, however, we will use uniformly valid approxima- 

tions obtained by Lakin [3] and Lakin and Nachman [4]. These approximations involve Airy 

and Scorer functions, and the Langer variable 

r/= ~ {3 (1 -y2)l[2dy}2]3 (2.4) 
1 

which explicity brings out the turning point nature of equation (2.1). In particular, if ~" = ~/e is 
a stretched Langer variable, then uniform approximations are 
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and 

Vo (~) ~--~ ° )(v ) + O (e3 ), 

U1 (7) = H(7) + a(7) Gi(~, 1) + J b ( 7 )  Gi(~, O) 

+ ee(7) Gi(~, -1)  + O(e3), 

Va (7) = a(rl) Ai(~, 1) + Jb(7)Ai(~ ,  O) 

+ ee(7)Ai(~, -1)  + O(e 3) 

I12 (7) = a (7) Bi(~, 1) + e 2 b (7) Bi(~, O) 

+ ec(7)Bi(~, -1)  + O(e 3) 

where 

Ai(~, I)= f o  ~ A i ( t ) d t -  I/3, Bi(~, 1)= 

Gi(f, 1) = 7r Gi(t)dt, 

Ai(¢, O) = Ai(¢), Bi(¢, O) = Bi(¢), 

Gi(~, O) = ~rGi(~), 

Ai(~, --1) = Ai'(~), Bi(t, -1)  = Bi'(~), 

Gi(~, -1)  = 7rGi'(~), 

W. D. Lakin and A. Nachman 

(2.5) 

(2.6) 

(2.7) 

f~o Bi(t)dt, 

(2.8) 

Ai and Bi are the usual Airy functions and Gi is the Scorer function. In (2.5), ~°)0,  ) is the reg- 
ular solution of the reduced equation ~(1 _y2)¢,,  _ y¢, + X~b = 0, and if v(v + 1) = 2X then 

~°)(. v) = Pv(-Y) (2.9) 

where Pv is the Legendre function of degree v. Coefficients in these expansions are given by 

a(7) = ~°)~v),  

c(7) = 7-' ~7 '-3/2 - a(7)}, (2.10) 

41 7_3/2 b(7) = 7-' c(7) + 7'-3/27-1/2{G, (7) - --~ }, 

and 

H(7) =R(y)  + Clog e + ~[2~(1) -- log 3]}a(7) 

where q/(x) is the digamma function, R(y) is the regular portion of the singular solution of the 
reduced equation, and G~ (7) is the order e3/2 term in the WKB approximation to the solutions 
VI and I12. 
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If  X(r/) denotes a general solution of  equation (2.2), then in terms of 77 the boundary 

conditions (2.3) are 

X(r/, ) = X'(r/ ,  ) = 0 (2.11) 

where ~71 = 7? , while at the turning point r / ( -1 )  = 0 

B2X(O) -- B3X(0) = 0, (2.12) 

with 

d 2 d 
Bz = - -  + ' ) ' ( r / )  

dr/2 

d 3 d 
, - -  ( 2 . 1 3 )  B3 = - -  + ( ' ) " ( r / )  - " / z ( r / ) )  dr/ dr/3 

and 7(r/) = 7?"(Y)/[r/'(Y)] 2. Writing X as a linear combination of  Uo, U~, VI, and V 2 and 

applying (2.1 1) and (2.12) now gives a characteristic equation for X of the form 

/X(c~, X, 6") = 0 (2.14) 

where A involves a four-by-four determinant. Fortunately, considerable initial simplification is 

possible. As the boundary point 771 is well away from the turning point 7? = 0, with exponential- 

ly small error only dominant terms in A need be retained. Further d/dr/= 6"-ld/d~ and approxi- 

mations to U0(r/) do not involve the stretched variable ~'. This implies that if W(X, Y) is the 

Wronskian of X(r/) and Y(r/) evaluated at r/~ while B(X, 1I) = B3X(O)B2 Y(O) - B2X(O)B3 Y(O), 
then 

&=B(U1, V~) W(Uo, 172){1 +0(63)}. (2.15) 

Great care must be taken when approximations to solutions of  equation (2.2) are used to 

approximate expressions like (2.14). In the present case, for example, the uniform approxima- 

tions to V1 and U~ involve rapidly varying Airy and Scorer functions of  a stretched variable. 

Hence, the term B(U1, V1) in (2.15) involves differences of  products of  rapidly varying func- 

tions. Indeed, when the uniform approximations (2.6) and (2.7) are used in B(U1, V~), a 
typical term which results is the Wronskian of  the Scorer function Gi with the Airy function 

Ai. Fortunately, potential difficulties can be avoided through the use of  relations like 

Gi(x, O ) A i ( x , - 1 ) - G i ( x , - 1 ) A i ( x ,  O)= Ai(x, 1) (2.16) 

which reduce differences of  products of  rapidly varying functions to a single rapidly varying 
function. We now obtain the uniform approximation 

3~/3e s I'(1/3)B(U1, V1) = 1 - eP(1/3)  (X - 1/10)/31/3 P(2/3) 

+ O ( e  3) 

(2.17) 
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where P(x) is the gamma function. Similarly, 

eW(Uo, V2) = r/ ' ,-3/z~°)(y 1 )B i (~ , )  

+ d + c')  

- c ( r  h )r/;-1 ~ ° ) ' ( y ,  )}Bi'(~" I ) + O(e 3) 

W. D. Lakin and A. Nachman 

(2.18) 

where ~7'1 = ?~"(Y 1 ) , Y l  = c~/(1 - or), and ~'1 = rh/e.  
Equations (2.17) and (2.18) imply that for a = O (e 3/z), the vibration eigenvalue X should be 

expanded in powers of either a or e3/2 . We therefore take 

= X (°) + e3/ZX O) + O(e3). (2.19) 

As v(v + 1) = 2X, we also expand v as 

v = v(°) + e312vO) + O(e a) , (2.20) 

so that 

~(o) = ½v(O)(v(O) + 1) and X(1) = (v(°) + ½)v (1). (2.21) 

Using (2.17) through (2.20) in (2.15), setting the resulting approximation to A(a, X, e) to zero, 
and expanding quantities evaluated at y~ in MacLaurin series now shows that first approxima- 
tions to the eigenvalues come from the relation 

= o 

which by (2.9) gives v (°)  is an odd positive integer, 

v, ( ° ) = 2 n + l  (n=O,  1,2 .... ). (2.22) 

Second approximations to v n are found to be 

4 ~ ( ~ )  
vnO) - {2 U2 _ c~e-3/~ }. (2.23) 

7rn! 

Thus, to order e3, the lowest eigenvalue Xo for transverse vibrations (0 = 2 )  is 

~o(a, e, ~r/2) = 1 + 31r-1/2(21/2e 3/2 -O0 + O(e3). (2.24) 

The lowest vibration eigenvalue for in-plane vibrations (0 = 0) may be obtained from (2.24) by 
noting that'~ = e(1 + O(a)) and using (1.5). This gives 
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}k0(0~,'~ , 0) = 3~'-1/2(21/2C 3/2 --00 + O(e3). (2.25) 

(0) ~, 3), the higher eigenvalues )Vn(a,~g, 0) with n > 1 are F o r a = O ( e 3 / 2 ) , a S ~ n  ( ~ ' , 0 ) ~ n ( 2 n  + 
always positive. 

3. In-plane buckling for slight off-clamping 

Buckling is unexpected in the transition range of slight off-clamping and high rotation rates 
(i.e., a = O(ea/2)) as each point of the rod is under tension. However, results for the vibration 

eigenvalues predict the possibility of exactly one in-plane buckled mode. By relation (2.25), the 

lowest in-plane vibration eigenvalue vanishes to order e ~ when 

t~ = 21/263/2 (3.1) 

and is negative for c~ > 2 1 / 2  e 3 /2  • Higher in-plane vibration eigenvalues are always positive. 
Hence, as/~2 ='~-x, for c~ = 2112e312 the in-plane vibration eigenfunction corresponding to ~o 

will be an in-plane buckled mode with eigenvalue 

2 
t tz = --2 {1 + O(a)} (3.2) 

In particular, the transitional parameter range yields large buckling eigenvalues. By (3.1), criti- 
cal rotation rates FZ e for buckling at slight off-clampings are proportional to a -1 . Hence, the 

critical rotation rates for in-plane buckling are high and increase as the degree of off-clamping is 
reduced. In particular, buckling of axis-clamped rods (a =- 0) is not indicated as infinite rotation 

rates would be required. 
We note that to obtain (3.1) we have not had to solve the buckling boundary value problem 

(1.3) and (1.4) directly. Rather, we have exploited the connection between the vibration and 

buckling problems. The buckling problem is often difficult to solve directly as it contains one 
less parameter than the corresponding vibration problem. Hence, the ability to predict buckling 

behavior from vibration eigenvalues is highly useful. 

Acknowledgements 

We wish to thank Dr. D. H. Hodges and Dr. D. A. Peters for a number of helpful discussions 

which included the suggestion that a large buckling eigenvalue was associated with the transi- 
tion range a = O(e3/2). This work was partially supported by the National Research Council of 

Canada under grant number A7850 (WDL) and by the Air Force Office of Scientific Research 

under grant number 77-3290 (A.N.). 

Journal of Engineering Math., Vol. 13 (1979) 339-346 



346 W. D. Lakin and A. Nachman 

REFERENCES 

[11 W.D. Lakin, On the differential equation of a rapidly rotating slender rod, Quart. Appl. Math. 32 (1974) 
11-27. 

[21 W.D. Lakin, Vibrations of a rotating flexible rod clamped off the axis of rotation, J. Eng. Math. 10 
(1976) 313-322. 

[3] W.D. Lakin, Effect of a small tip mass on the vibrations of a rapidly rotating flexible rod, Quart. J. 
Mech. Appl. Math. 31 (1978) 497-506. 

[41 W.D. Lakin and A. Nachman, Unstable vibrations and buckling of rotating flexible rods, Quart. Appl. 
Math. 35 (1978) 479-493. 

[51 W.D. Lakin and B. S. Ng, A fourth order eigenvalue problem with a turning point at the boundary, 
Quart. J. Mech. Appl. Math. 28 (1975) 107-121. 

[6] J.C. Miller, On the choice of standard solutions for a homogeneous linear differential equation of the 
second order, Quart. J. Mech. Appl. Math. 3 (1950) 225-235. 

[71 D.A. Peters, An approximate solution for the free vibrations of rotating uniform cantilever beams, 
NASA Technical Memorandum TM x-62, 299, Sept. 1973. 

Journal of  Engineering Math., Vol. 13 (1979)339-346 


